
@mattiasgeniar | https://ma.ttias.be | https://www.nucleus.be

HTTP/2HTTP/2
MAKING DRUPAL EVEN FASTERMAKING DRUPAL EVEN FASTER

THE NEW PROTOCOL FOR THE WEBTHE NEW PROTOCOL FOR THE WEB

@mattiasgeniar
Drupal Camp Leuven 2015

WHAT'S THIS TALK ABOUT?WHAT'S THIS TALK ABOUT?
History: what is HTTP/1.1
How does HTTP work
What does HTTP/2 do
Benefits of HTTP/2 over HTTP/1.1
Disadvantages of HTTP/2
Performance comparisons
Conclusion

WHO AM I?WHO AM I?
Mattias Geniar
System Engineer / Support Lead @
Former dev, mostly Ops now
Strong advocate of #DevOps
Blogger at

Nucleus.be

https://ma.ttias.be/http2

CRON.WEEKLYCRON.WEEKLY
Weekly newsletter with linux & open source content
www.cronweekly.com

HISTORY: WHAT IS HTTP/1.1HISTORY: WHAT IS HTTP/1.1
Client/server protocol
Relies on requests & responses
Defacto standard since 1997
"Meta data" for requests hidden in HTTP headers
Without HTTP, there is no web.
Simple protocol, plain text. Easy to read, hard to parse.

HISTORY: WHAT IS HTTP/1.1 (CONT)HISTORY: WHAT IS HTTP/1.1 (CONT)
Request headers

Example: user requests
TCP connection to 31.193.180.217 on port 80 is established
User Agent sends headers to describe the request

http://ma.ttias.be/http2

REQUEST HEADERSREQUEST HEADERS
GET /http2 HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Host: ma.ttias.be
User-Agent: IE, Chrome, Firefox, ...

Simple key/value pairs, new line separated. Double new line ends
the headers.

HISTORY: WHAT IS HTTP/1.1 (CONT)HISTORY: WHAT IS HTTP/1.1 (CONT)
Response headers

Example: user requests
Client sent all HTTP headers
Server generates response,
sends HTTP headers + data

http://ma.ttias.be/http2

RESPONSE HEADERSRESPONSE HEADERS
HTTP/1.1 200 OK
Cache-Control: max-age=3, must-revalidate
Content-Encoding: gzip
Content-Length: 9944
Content-Type: text/html; charset=UTF-8
Server: Apache
Date: Mon, 31 Aug 2015 20:55:50 GMT

Same kind of key/value pairs, new line separated. Double new
line ends the headers.

Uses the colorful CLI client.httpie

WHAT DOES HTTP/2 DO?WHAT DOES HTTP/2 DO?
OR: WHAT PROBLEM IS HTTP/2 TRYING TO SOLVE?OR: WHAT PROBLEM IS HTTP/2 TRYING TO SOLVE?

Binary stream, no more plain text.
Based on Google's SPDY Protocol
Multiplexed connections: multiple requests, one TCP/IP
connection.
Server side push
Request priorities

WHO SUPPORTS HTTP/2: CLIENTSWHO SUPPORTS HTTP/2: CLIENTS

Image source:
(updated 11/2015)

caniuse.com

WHO SUPPORTS HTTP/2: SERVERSWHO SUPPORTS HTTP/2: SERVERS
Apache: module, (based on mod_h2)
(Apache 2.4, it's being backported to Apache 2.2)

Nginx 1.9.5+: beta, but stable, running on
howto:

Microsoft IIS 10, only in Windows 10 and Server 2016
Alternative servers: H2O, nghttp2

mod_http2

nucleus.be
enable HTTP/2 in nginx

Bottom line: it's getting easier to run HTTP/2 in production today
on your servers. But we're not there yet.

BENEFITS OF HTTP/2BENEFITS OF HTTP/2
Faster?
Less resource intensive?
Better bandwidth usage?
More control on the server?

BENEFIT #1: DOMAIN SHARDINGBENEFIT #1: DOMAIN SHARDING
Most browsers only allow 6 connections per hostname. This is why people shard.

BENEFIT #1: DOMAIN SHARDINGBENEFIT #1: DOMAIN SHARDING
Browsers limit connections per hostname
Devs are smart: cdn1.mydomain.tld, cdn2.mydomain.tld, ...
Browser now starts multiple simultaneous per domain, yay!
Downsides

multiple DNS lookup
new TCP connections (3-way handshake)
TCP slow start (congestion window)

Despites downsides, still a performance win (in most cases) in
HTTP/1.1

BENEFIT #1: DOMAIN SHARDING - THEBENEFIT #1: DOMAIN SHARDING - THE
HTTP/2 FIXHTTP/2 FIX

Multiplexed TCP connection: one connection to rule them all
Sharding now hurts performance, because with HTTP/2

... only 1 DNS lookup

... only one TCP/IP connection

... only one TCP slow start
Additional benefit: request priorities (later)
Less concatenated large CSS/JavaScript files (*)

(*) Depends: no point in sending > 150KB CSS files if current page only needs 5KB of that CSS. Could make sense
in HTTP/1.1, to have it cached in the browser during initial page load.

BENEFIT #2: HTTPS / TLS EVERYWHEREBENEFIT #2: HTTPS / TLS EVERYWHERE
In the HTTP/2 protocol, HTTPS is not required.
All major browsers do require HTTPS for HTTP/2
H2C: HTTP/2 over plain text (used: nowhere, yet)
More fun managing SSL certificates (*)

(*) (EFF) to offer free certificates, just don't .Letsencrypt.org screw up

BENEFIT #3: HEADER COMPRESSIONBENEFIT #3: HEADER COMPRESSION
In HTTP/1.1, headers are never compressed or encrypted.
Some sites send > 100KB worth of cookies (*)
Could easily have > 75% compression ratio
HPACK: HTTP Header Compression
For example, random website:

HTTP/1.1 header size: 235 Bytes
SPDY 3.1 header size: 59 Bytes
HTTP/2 header size: 28 Bytes
8x reduction in size

(*) Research: 1MB of data for cookies

BENEFIT #4: SERVER SIDE PUSHBENEFIT #4: SERVER SIDE PUSH
In HTTP/1.1, client (UA) decides priority
HTTP/2 can send additional responses that weren't requested
yet

ie: CSS or javascript the client would request anyhow
Can be denied by the client
Does not replace websockets, no Javascript API for server side
push

BENEFIT #4: SERVER SIDE PUSHBENEFIT #4: SERVER SIDE PUSH
Normal HTTP/1.1

Client downloads page, parses it, finds additional resources &
requests them. ~50ms delay for parsing.

BENEFIT #4: SERVER SIDE PUSHBENEFIT #4: SERVER SIDE PUSH
HTTP/2

Safe to assume client will want CSS, push it with initial HTTP
request.

BENEFIT #4: SERVER SIDE PUSHBENEFIT #4: SERVER SIDE PUSH
How to manipulate from your PHP code?
Each webserver may implement its own method
Headers will be used to manipulate the request
Example, via the server:nghttp2
header('Link: </path/to/your/style.css>;');

BENEFIT #4: SERVER SIDE PUSHBENEFIT #4: SERVER SIDE PUSH
Webserver interprets response, sends Server Side Push to
client

Unknowns: Nginx, Apache, IIS, presumably Link-header as
well?

client --> webserver --> PHP code

PHP code --> webserver --> client

BENEFIT #5: REQUEST PRIORITIESBENEFIT #5: REQUEST PRIORITIES
Pretty obscure feature
Initiated by the client (browser) to the server
It's a preference, not a requirement. Server can ignore this.
Browser fires of all HTTP requests immediately (as they are
discovered), assigns them a priority, processes the responses
by the server.

BENEFIT #6: SAME HTTP STATUS CODES &BENEFIT #6: SAME HTTP STATUS CODES &
METHODSMETHODS

Not really a benefit, but still convenient
404, 503, 401, ... all the same
PSR7 still applies: POST, PUT, GET, ... methods are the same

BENEFITS, RECAPPEDBENEFITS, RECAPPED
Less domain sharding
TLS everywhere
Header compression in HPACK
Server side push
Request priorities

DISADVANTAGESDISADVANTAGES
Still beta in most webservers (nginx/apache)
"Babysteps", no protocol changes, critics argue "did not do
enough"
Supporting HTTP/1.1 and HTTP/2 at the same time is hard:
what's good for HTTP/1.1 is bad for HTTP/2 and vica versa
HTTP/2 is new, not enough real world usage?
(Firefox in July 2015: 13% HTTP requests are HTTP/2)

PERFORMANCE COMPARISONPERFORMANCE COMPARISON
ON HTTP/1.1: 6 CONCURRENT CONNECTIONS PER DOMAIN: 30S LOADON HTTP/1.1: 6 CONCURRENT CONNECTIONS PER DOMAIN: 30S LOAD

PERFORMANCE COMPARISONPERFORMANCE COMPARISON
ON HTTP/2: MULTIPLE STREAMS OVER ONE TCP/IP CONNECTION: 1.5S LOADON HTTP/2: MULTIPLE STREAMS OVER ONE TCP/IP CONNECTION: 1.5S LOAD

CONCLUSION #1CONCLUSION #1
“If your application is slow on HTTP/1.1, it'll be slow on

HTTP/2.

If your application is fast on HTTP/1.1, it'll only get faster
on HTTP/2.”

CONCLUSION #2CONCLUSION #2
“Supporting HTTP/2 on your site is relatively easy: enable

server-side support.

All clients (that matter) already have HTTP/2 support.”

CONCLUSION #3CONCLUSION #3
“Supporting both HTTP/1.1 and HTTP/2 at the same will

be a challenge.”

THANK YOUTHANK YOU

ANY QUESTIONS?ANY QUESTIONS?

Contact via @mattiasgeniar or via m@ttias.be

www.nucleus.be || ma.ttias.be || cronweekly.com

